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ABSTRACT

/ The objective of this mésﬁgation is to derive the reliability and the
associated probabilistic failure criterion for composite materials under
combined stress. In the analytical derivation, the concept of joint probability
was used and applied to the Weibull distribution function. In applications, given
the experimental measurements of the necessary statistical parameters for the
specific composite, the probabilistic criterion of the composite failure and the
reliability of the specific structure can be predicted.

Graphical representations for the joint reliability and joint failure contours
were made in two and three dimensional space for the several different sets of
statistical strength parameters to illustrate the effect of parameters on reliability.
Such understandir.,g will enhance selection of fiber and matrix (which have their
own statistical strength parameters) and can lead to improvement in reliability of
some composite components in an aircraft structure. These reliability and

failure concepts can also be used in repair problems by selecting the proper

composite material with the appropriate statistical parameters. - ¢
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. INTRODUCTION

A. FAILURE AND RELIABILITY OF THE COMPOSITE MATERIAL

In a composite, the matrix and reinforcement materials are combined to form
a macroscopically multiphase material . The macroscopic state gives rise to a
material which is internally redundant against local defects and damages.
[Ref.1] The ply is the basic unit in constructing composites which consists of
fibers embedded in a matrix. It is possible, therefore, to relate composite design
properties to corresponding constituent properties. As a result, it is possible to
design structural components made of fiber-composite when the design
requirernents and the properties of the candidate constituent materials are
known. For high performance structures, the unidirectional fiber-matrix
composites consist of strong stiff fibers embedded in a comparatively ductile
matrix . For a rational structural design, the strength of such unidirectional ply
needs to be expressed in terms of the stress tensor. Because the ply is
composed of numerous fibers, the composite failure process is sequential,
therefore ad hoc failure criteria can not be applied to analyze the composite
failure. Furthermore, such conventional failure criteria such as Mises and
Tresca's criteria are related only to a single parameter (mean function of
failure). As a result, they can not be applied to multiple parameter functions, so
suitable general relations to represent failure contours of composite materials
are required.

In the application of a one-dimensional failure criterion, the magnitude of
stress (one component) at each spatial location of the structure is mapped into

respective points on the stress space (which is a line). If all the points within the




domain are bounded by the tensile strength limit and the compressive strength
limit, then the entire structure may be considered safe. The reliability under
unidirectional stress, then, is the product of the reliability of each spatial
segment at the respective stress level. Under planar combined stress, the
magnitude of stresses (3 components) at each spatial location of the structure is
mapped into respective points on the six dimensional stress hyperspace. So the
stress that is interior to a domain bounded by the failure surface is safe and the
failure criterion is the analytical, graphical, or numerical representation of the
failure surface. To formulate the failure criterion, consistency of mathematical
operations can be assured by adhering to the quotient rule of tensor variables.
Historically, the formulation of many failure criteria were intuitively taken to be
based on failure mechanisms but in fact, they are phenomenciogical because
of the inconsistency between macro and microscopic failure modes.
Phenomenological failure criterion may be considered as a mathematical
model of the material transfer function relating the external excitation (stresses)
to the material's response (failure). The phenomenological mathematical
mode! is intended to aid experimental design to facilitate interpolation,
correlation, and retrieval of experimental observations. They do not, in general,
address the statistical variability of strength.

For a combined stress failure mechanism, when one stress component does
not affect the strength of another component, the failure is mechanistically
uncoupled; conversely when one stress component affects the strength of
another component, the failure is mechanistically coupled. In addition, if
probabilistic failure is also taken into consideration, the condition for the {-'ure
mechanism is not fixed; it depends on the stochastic combinations of the

intrinsic strengths. Under combined stress, mechanistic uncoupling with




statistic independence can in‘aract to produce phenomenologically coupled
contours. On the other hand, mechanistically coupling with statistical
dependency can also produce phenomenologically coupled statistical contours.
These cases can only be distinguished by examination of both the contour in
the stress space and the statistical strength distribution in the probability space.

In any phenomenological failure criterion, the shape of the failure envelope
is never completely known unti] experiments are performed for all possible
combined states of stress. As a result, complete experimental determination in
two or more dimensions place an impractical demand on time and resources
because of the large number of tests needed. However, with the establishment
of a probabilistic failure criterion, this experimental failure contour can be
related to the shape parameters (the variability) in the material's principal
direction. With such supplemental information, failure contours connecting the
mean value can be established by a smaller number of samples. Therefore an
analytical model can complement the failure characterization by reducing the
required number of experimental measurements, providing bases for
comparison of the material's performance, and simplifying data and data base
reduction. In structural analysis applications, the reliability of a specific structure
under a combined stress can be determined by mapping the spatial domain into
the stress domain through stress analysis. Using the probability failure criterion,
the reliability of each spatial location corresponding to the respective stress
tensor and magnitude can be calculated. The joint reliability of the individual
spatial location can in turn be combined to predict the reliability of the entire

structure.




B. OBJECTIVE OVERVIEW

The objective of this investigation is to derive an analytical model for
composites failure and reliability under combined stress conditions. The
Weibull distribution function was used in the probabilistic modeling. Chapter 2
presents the theoretical formulation for failure and reliability, and the resulting
equations are shown graphically in the following chapters. Chapter 3 shows
the joint reliability and linearized failure Cumulative Distribution Function (CDF)
in two and three dimensional space. The effects of parameters which depend
on the material were ~nalyzed. Chapter 4 shows the joint failure CDF in two
and three dimensional space. The effects of material parameters were also
analyzed. In Appendix B, these probability distributions were compared to
experimental data availabe in the literature.

Finally, Chapter 5 provides conclusions and some remarks for the future

work in this area.




Il. THEORETICAL FORMULATION

A. RANDOM VARIABLES

A failure criterion for a solid prescribes the risk of failure in terms of the
causes of the failure. Mechanical catastrophic rupture is considered herein.
The effect of mechanical failure may be considered to be caused by either
stress or stain depending on the microscopic failure processes. |f the
constitutive relation of the material is available, conversion between stress and
strain can be readily made and the two variables may be considered as
equivalent. Similarly, a probabilistic failure criterion which describes the
probable risk of failure can be expressed in terms of stress or strain as random
variables. Stress is selected as the random variable herein with the
understanding that the variable can be changed to strain with the appropriate
constitutive relation. We denote the probabilistic random variable as X;, for the
scalar component of the stress tensor , and x; for the realized random variable

(i.e. the strength Xj under the respective stress component o;j).

B. PROBABILISTIC CONDITIONS OF FAILURE

Under combined stress conditions, when more than one component of the
stress tensor assumes non-zero values, the effect of each component of the
stress tensor contributes to the failure of the composite. Failure of the
composite does not occur if failure by each individual stress component does
not occur.

For the composite subjected to a planar state of stress, we denote the failure

events as:




A: Failure caused by normal stress along the fiber direction - o4
B: Failure caused by normal stress perpendicular to the fiber direction - 65
C: Failure caused by shear stress along the fiber direction - og.
Then the failure of the composites is either by A or by B or by C or by all three as
illustrated in Figure 2-1:
P(A + B + C) = P(A) + P(B) + P(C) - {P(AE) + P(BC) + P(CA)} + P(ABC)
| (2-1)
As a special case, if all three events are mutually exclusive, then Equation
(2-1) can be simplified by
P(A+B +C)=P(A)+ P(B) + P(C) (2-2)

Figure 2-1 : Joint Probability




C. JOINT DISTRIBUTION FOR FAILURE
1. Discrete Case

in the development of the analytical expressions for the probability of
failure, we first developed the general form of the distribution for three random
variables using the notation X; for the random variables and x; for the realized
random variables. For the planar stress, the customary notation for the range of
i = 1,2,6 is used. These general expressions are then specialized for the
combined stress cases by replacing the realized random variables by o;.

The probability of failure under the combined influence of three random
variables can be expressed by the joint probability density function (pdf) of the
individual realized random variables:

P(X;=0, X, =0, Xy =0) =1(0,,0,:0) (2-3)
where (o4, 65, 6g) 20 and XXX (04, 69, 6g) = 1. If random variable Xg is to
take on any one of the values of 6g1, 6g2, 6g3...., Ogn » then the joint pdf at

some combination of X1=04;, X2=07j, and Xg=0gk can be expanded by
P(X1=0p Xy =0, X6 =0, ) = (04102 T4

(2-4)
n
P(X1_—. 6. X, = °2j) =f(o“,c52j) = Eof (G1i'02j'06k) 25)
>
P(X,=06.,,X. =0 =f¢o,.0.\)=2f(c,,0,..0
(%, 2i""%6 6k) (21 6k) e=o( W22 6k) (2-6)
m
P(X;=01Xe = 061) =1 (04 O6) = _zf(owozrosk)
j=0 (2-7)

and the marginal probability function can be obtained for the three random

variable case:




“

P00 =10 = 2 (Cw Tz )
(X =9) = 1(%2) = ZZ(2 %)

1 m
P(Xe=%6i) =1(%e1) = i_zog,)f(oﬁ,ozj,oek)

which can be written
| m n
izzof1(°1i) = 1’§)f 2(%2;) = 1'k§)f6(06k) =1
I m n
DI (c1i’62j’°6k) =1

i= 0j= Ok=0

2. Continuous Case

(2-11)

(2-12)

If three random variables are considered, then Equation (2-4) through

(2-7) can be expanded by
P(X1 < 01,X2 <o, Xe < 06) = F(o1,o'2,06)

06 02 01
=j j jf(u,v,w)dudvdw

- 00 —00 —00

02 61 o
P(X,<0,X,€0,) =F(0,0,) = I_,, I_J_fiu,v,w)dwdudv

66 02 o
P(X,£0,,X,<0,) =F(0,,0,) = j_”j [f w,v.w)dudvdw

06 01 oo
P(X,s0,Xs0g)=Fo,o) =] | [tuvwdvdudw
and the marginal distribution can be obtained by

P(X,s0)=Foy=] j_: jiu,v,w)dvdwdu

(2-13)

(2-14)

(2-15)

(2-16)

(2-17)




P(X,<0,)=F(c,)= I_:I-:_fiu,v,w)dwdudv

(2-18)
06 v oo
P(Xg<0g) = F(0¢) = j_” j_“ [ f(u,v,w)dudvdw 019
which can be written
Jw J-m J‘F(U:V,W)dUdVdW= 1
T (2-20)

From the definition of conditional probability, ths conditional probability of

o given that 64 occurs can be represented by a function form:
f(o1,o 2)

f(02|01) - f1(°1) (2-21)

where (o1, 60) = P(X1=01, Xo=05)
a. General Case

If we consider the combined stress case, the random variables X1,
X2, and Xg can be assumed to be the failure strength in the 1, 2, and 6 direction
respectively. And under a combined stress condition, the failure occurs when
either failure strength X4, Xo, or Xg is reached. Therefore the probability of
failure under combined stress X1 and X2 can be represented by

P(X1 + X2) = P(X1) + P(X2) - P(X1, X2)
and then the above relation can be related to the joint distribution function as
follows

F(o1, 02) = P(X1 £ 01, Xo£ 00) = P(X1+ X2; X1 €61, X2 0p) (2-22)
and similarly for three random variables case.

F(oy,0692,0g) = P(X1201,X2502,Xg<0g) =P(X1+X2+Xg :
X1201,X2<05,Xp<0g) (2-23)




Equation (2-22) is proven in Appendix A-1 using the Weibull
distribution function for the independent case.

If the joint distribution of failure under the combined stresses of 64, 65,
and og is considered, the strength failure criterion of a composite is the
minimum of the failure strength X1, X2, and Xg, that is, at Xg = X1AX2AXg. ( We
are not dealing with the minimum magnitude among Xy, X2, and Xg but rather
one value among Xq, X2, and Xg which is less than the intrinsic failure

strengthes of 64, 09, and og becomes the minimum value here.) So
F(c51,<52,06) =P{X; = X1 A X2 A Xsover(o1,02,ce)}

where ( 61, 69, 0g ) is the three dimensional stress domain. If the relations
among o4, 6o and og are given by

o4 =B1209, 65 =Bogog, og = Bg10y (2-24)
then, the joint pdf P(X1< 64,X2505,Xg<cg) can be evaluated. If 6 is assumed
to be zero, then the joint probability functions, P(X1<0¢,X2<05) can be divided
into two probability distribution functions corresponding to S and So domains
as shown in Figure 2-2. The domain S¢ is applied for the case when
[X1/ X2 <B12and X1 < o1] which the composite fails by failure strenth
Xo = X1X2, whereas the domain Sp is applied for the case when
[X1/X2 > B12 and X2 < o] which the composite fails by failure strength
X4 = X4A X2. So the following joint relation can be obtained:

P(X1 <04, X2 £ 09) = P(X{/X2<By2and X1 <54)

+ P(X1/X2 2 B12 and X2 < 0p) (2-25)

Applying Equation (2-25) to domains described in Figure 2-2, then

P(X, < 01,X2 < 0’2) = Js1jf (u,v)dudv + jszj f(u,v)dudv

10




Using end limits and considering P(X{1<6{,X2<05) = F(c1,02),then the joint
distribution function for the general case can be represented by
01 oo 0‘2 o
F(o,0,) = jo J 4 fu.v)dvdu + jo [, fvdud
®12 12 (2-26)

where u and v are dummy variables.

Xy

Figure 2-2 : Domains For The Joint Distribution

b. Specific Case
The joint probability of the bi-axial case (Equation (2-25)) can be
expanded for specific cases.
(1 In nden . If the events X4 =04 and Xo = oo are

independent for all o4 and o5, then the joint probability can be represented by

11




P(X1=01,X2=09) = P(X1=01) P(X2=02)
or equivalently

f(o1,02) = f1(51) f2(c2) (2-27)

If three independent random variables are considered:

P(X1=01,X2=02,Xg=0g) = P(X1=01) P(X2=02) P(Xg=0g)

f(c4,062,08) = f(51) f(02) f(og) (2-28)

Similarly, if the random variable X1 and X2 are independent for all
o4 and 6o:

P(X{<04,X2509) = P(X1=04) P(X2<0))
or equivalently:

F(c4.00) = F1(c9) F2(09) (2-29)
where Fq(c4) and Fa(o5) are the marginal distribution functions of X1 and Xo
respectively. Similarly, for the three independent random variable case:

F(X1<01,X2509,Xg<0g) = P(X1<01) P(Xo<02) P(Xg<og)
or equivalently

F(o4,00,0¢) = F(01) F(oo) F(og) (2-30)

So the joint distribution function can be expanded a step further for
the independent case.

From Equation (2-26) (refer to Appendix A-2)
F(0’1,62) = F1(o1) + F2(02)
()'1 u 62
_ J’o f 1(u)F2(§—)du - [ Tt (F(B,,v)dv
12 Y (2-31a)
Equation (2-31a) can be further expanded by integration by parts
F(o1,02) = F1(o1) + F2(02) - 2F1(c1)F2(02)

1 u %2
+ B—jo F (u) fz(—B—;}ju -B, 2j0 F(Vf,(B,,v)dv

12 (2-31b)

12




Comparing Equations (2-31a) and (2-31b) reveals that the
arguments of the pdf and CDF are exchanged so either Equation (2-31a) or
(2-31b) can be used depending on simplicity of algebra.

(a) Weibull Distribution Model. If the Weibull function is applied to

the independent case, then Equation (2-31a) can be expanded by

oo 6 |- G2 )
LT el (8) ool (a25) T
L) o) el ()

By rearranging terms, the joint distribution function for the

Weibull mode! can be obtained by

3 - a, a,
oL R[E) e ) () T
o, a -1 «“ /B %
L e

(2) Independent And Identical Case. Equation (2-31a) can be further

expanded if the identical case is considered.

For the identical case, F(o) = F1(01) = F2(05) and equivalently {(c)
= f1(04) =fo(02), so expanding Equation (2-31a)

[+ 3
- A ?
F(op0,) = F(s)) +F(0,) - jo f(u)F(B12)du+ jo f(V)F(B,,v)dv
(2-33a)
and similarly Equation (2-31b) can be represented by

13




F(oq.00) = F(G1) +F(op) -2 F(o4) F(02)

1
+(—B——)] Hu) '(B }1u+ 812_[ RVt (B,,v)dv
12 (2-33b)

For the special case when B12 = 1, 6 = 64 = 65 and Equations
(2-33a) and (2-33b) can be simplified to

F(o,0,) =2F(0) - 2 | f (U)F (u)du

and rearranging finally gives the joint distribution function for independent and
identical case.(refer to Appendix A-3):
F(61,00) = 2 F(o) - (F(0))2 (2-34)
Equations (2-33a) and (2-33b) can be evaluated for specific
models such as the Weibull distribution {uinction.
(a) Weibull Distribution Model. For the Weibull model, the pdf (f(x))

and cumulative density function (CDF: F(x)) can be represented by

f@=(g XB) eXp{ (& )“} (2-35)
Ao =1- exp{_ (%)“} (2-36)

Substituting Equation (2-35) and (2-36) into Equation (2-33a)

ool (5 o5
U8 - -oof- (25T
£ h-eel- (2

|
ey
o
n
/N
=|R
p—
N
™|<
N
7
m —
x
FR_\
)
N
w|<

14




By integrating and rearranging the terms, the joint distribution function of the
Weibull model under bi-axial siress ¢4 and o5 can be simplified to (refer to

Appendix A-4)
F(o02) = e*"{(%l) (%7 (237

D. MEAN FOR THE JOINT DISTRIBUTIONS
1. neral
If X4 and Xo are two continuous random variables having the joint
probability density function f(c¢,65), the mean or expectation of Xjand X2 can

be obtained by:

By= E(o1) = I_J_wc1f(°1’°2)d°1d°2 (2-38a)

n,=Eo, = o,.fro,0,\dodo
2= E(0>) I_J_m 2'(%pC3)C0d0, (2-39a)

Considering the stress, the bottom limits of the double integration are
changed, so Equations (2-38a) and (2-39a) can be expanded specifically for

the stress case which we are concerned with

u,=Eoc )= me:Sfc,c do do
1=§o)=] | of(oy0,)dods, .36,

u,=FEoc =w°:5fo,o‘dodo
2 E(z) IOJ02(1 2)"C 12 (2-39b)

Similarly if three random variables are considered, then Equations

(2-38b) and (2-39b) can be expanded by

oo oo 0o

i, = o f(o,0,,0.\do.do do
1 jojojo1(’ 210¢)00,00,00 (2-40a)

oo o0 _ OO

g, = o f(o.,06,,0.\do do do
2 jojof02(1 2)04)00,00,90 (2-40b)

15




He= jo Io Ioosf(o1,02,ce)do1d02d06 (2-400)

2. Specific Case
a. Independent Case
If the random variables X1 and X2 are independent for all 61 and oo
f(01.02) = f1(o1) f2(c2)
and Equations (2-38b) and (2-39b) can be expanded by

u=°°°o°:sf c.\f.(o.)do do
N ENCOIACATE S 241

u=w°;fcf0dcdc
SIREENCHNCATES .00

taking the integral and noting that Fq(e) = Fo(ec) = 1, then Equations (2-41a)

and (2-42a) can be simplified to

M, = o::f o \do
1 jo 11( 1) 1 (2-41b)

h,= o:sf c,\do
2 .[0 2! 2(92)C0, (2-42b)

Similarly, for the three random variable case:

GO o0 oo

M= ’{o j.o ’{o o1f1(o1)f2(02)f s(°e)d°1d°2d°e = j:c1f1(o1)dc1
(2-43a)

H,= j:_[:f:ozf1(c1)f2(02)f 6(06)d01d02d06 = j:czf 2(02)d02
(2-43b)

M= ]:j:j:osg(oofz(oz)f 6(%¢)do do do . = joosf 6(%6)0
(2-43c)

Observing Equations (2-41b) through (2-43c¢), it can be concluded
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that the mean values of the random variables X1, X2, and Xg are dependent
only on their corresponding probability density functions.
b. Independent And Identical Case

For the independent and identical case, the joint probability function
can be obtained by

f(041,090,08) = f(04) f(02) f(cg)
where f(c) = f1(c) = fo(c) = fg(0)

Applying these relations to Equations (2-41b) through (2-43c), the
mean values for the joint distributions can be simplified for the independent and

identical case.

wo=p,=u,=]of(c)do
2o Jo (2-44)

(1) Weibull Distribution Model. If the Weibull probability function is

considered, Equation (2-44) can be expanded as follows
2 o-1 a
Yo o
=] o==] exp-(=%| tdo
w= o{5)3) "{ () }
letting = (o/B)2, then
o 1
h= fo By * exp( - y)dy

Using the definition of the Gamma function, we finally get the

mean function:

h=pr(1+ ) (2-45)

E. JOINT RELIABILITY
1. Concept Of Reliability

The common notion of reliability is the confidence in the ability of a
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device to perform adequately over a range of specified conditions. Such
qualitative measurement of confidence and adequacy can be guantitatively
calculated by probability. In the formalism of probability, the conditions over
which the device is intended to perform is defined as the random variable X:
and the probability over the range of conditions is defined as the CDF over the
range that the random variable experiences in service. That is, over the sample
space ¢ experienced in service, the probability of failure is defined by the CDF
over the sample space:
P(X <£0) = F(o)
Since reliability is the compliment of failure, it is defined by
R(c) = 1 - F(o) (2-46)
2. Joint Reliability
If X4 and Xo are two random variable, then the joint reliability of X4 and
X2 can be defined by
R(c1,02) = 1 - P(X4<01,X2502) (2-47)
or equivalently for the three random variable case
R(c1,02,06) = 1 - P(X1<061,X2502,Xg<06)
For the discrete case, equation (2-47) can be expanded by:

Ro,0,)=1~ > Stuv)

u<o V<O' (2‘48)

P(c1,02,06)=1 > z quvw

U<0' v<o W<06

If the continuous case is considered, the joint reliability function of X4 and

X2 is defined by

01 02
R(c1,02) =1- J_Jmf(u,v)dvdu (2-49)

and from Equation (2-49) the marginal reliability function can be obtained:
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R1(01) =1- j_m.[fo(cu,v)dvdu (2-502)

62 00
Rz("z) =1- j_mj-fe(ou,v)dudv (2-50b)

If the three random variable cases are considered, Equation (2-50a) and

(2-50b) can be further expanded:

c oo o0
R1(o1)=1—f 1] ff(u,v,w)dvdwdu

(2-51a)
02 oo oo

R,(0,) =1- j_wj_wjfiu,v,w)dwdudv 2510
Of oo oo

Rg(0g)=1- j_mj_wffiu,v,w)dudvdw 2510

R1(o1), Ro(o2), and Rg(og) are also equivalent to the one dimensional

reliability function which are defined by
J
1

R1(o1) =1~ j °Qf1(u)du

(2-52a)
0’2

Ry(02)=1- J_wf Aujdu (2-52b)
0'6

Ry(0¢)=1- f_wf [udu (2-520)

a. General Case
The general equations for reliabil.y can now be applied to the
calculation of the mechanica! strength reliability of composites under combined
stresses by specifying the random variables as X; and the realized random
variables as oj. The joint reliability under combined stress 64 and o2 can be

obtained by
P(o1,02) =1- F(o1,02) =1- P{X= X, A xzover(oj,cz)}
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where X1 and Xo are the failure strength in each coordinate(see Figure 2-2).
Noting that the joint pdf under combined siress o4 and o2 is
represented by the double integration of f(c1, o2) over the domains S¢ and S»
and that the double integration of f(c{, o2) over the domain S3 (see Figure 2-2)
is defined as the joint reliability under combined stress o and 62, then the

following relation can be obtained:

0,6.\=1-Fo.,0.\= N wf(u,v)dudv
Revo) =1-Feoe) =l J, 25

Comparing Equation (2-53) to Equation (2-26), Equation (2-53) can
be represented in another form:
(51 oo 0'2 oo
R(5,9,) =1-j0 j_éLf(u,v)dvdu+ jo [ #(u,v)dudv
12 82" (2-54)
If the joint reliability under three combined stress is considered,

equation (2-53) can be expanded by

6,6,.,6.\=1-F(o.,0,.,06.)= T wf(u,v,w)dudvdw
R(0192%%) (°1%2:%) Joejczjc1 (2-55)

b. Specific Case
The joint reliability of bi-axial stress case can be further expanded for
the specific case as in the probability distribution function.

(1) Independent Case. If the random variable X1 and Xo are

independent for all 64 and oo, then Equation (2-53) can be expanded:

G,0,)= ) mf (Wf (vidudv
ero2) I%I%' 2 (2-56)

After integration, Equation (2-56) can be simplified to (refer to
Appendix A-5)
R(o1,02) = {1-F1(c1){1-F2(c2)} (2-57)
noting that Rq(c1) = 1-F4(o1) and Ro(op) = 1-Fo(09)
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R(o1.02) = R1(c1) R2(02) (2-58)
For the three random variable case, Equations (2-56), (2-57), and

(2-58) can be obtained by

Roy0,05) =] | | ,001,0)f widudvaw

= (1-F1) (1-F2) (1-F¢)
= R1(01) R2(c2) Re(os) (2-59)

In application to a composite, if the probability of failure model (Fj)
is known, then the reliability of the composite can be calculated. The probability
of failure model can be inferred from the physical consideration of the failure
processes.

When a filament composite is loaded along the fiber direction,
local failure begins when the weakest fiber fails. The load carried by the broken
fiber is transferred to the neighboring fibers. Upon additional increase in load,
additional fibers fail, leading to the increase of failure sites distributed over the
composite. The higher the load, the higher the density of such failure sites and
the higher the probability of clustering. The spatial clustering of the fiber failure
sites leads to stress concentration and ultimately causes the catastrophic failure
of the composite. Harlow and Phoenix investigated the probabilistic modeling
of the above sequential failure events and arrived at a modified weakest link
model in which the link of the chain is a bundle. [Ref. 2] For a limited range of
the random variable, it can be approximated by the two parameter Weibull

model [Ref. 3}:

oo ()

When a filament composite is loaded perpendicular to the fiber
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direction, the failure mode is similar to that described by classical fracture
mechanics. The exception is that for a composite, all inherent flaws are not
randomly oriented, but are aligned with and propagate along the fiber. In such
a case, the largest crack dominates and it is effectively a weakest link process
over the physical volume. On these physical grounds we may use the Weibull

model for both the transverse strength and shear strength:

o
2

-y
B

Equation (2-57) can be specified for these Weibull distribution

v

functions:

- (3) (5)
P, Pa (2-6C)

equivalently for the three random variable case:

veesorert ) -5 6
Py 2 6 (2-61)

If we note F(o1,0p)=1-R(c1, op), then the joint distribution

function obtained in Equation (2-32) can be simplified by

oot 5 5]
T2 B B, (2-62)

F ) Sl o gg- @, _0-—6 a
(01929¢) = —exp—(BJ _(ﬁzj _[Bs) (2-63)

(2) Independent And Identical Case. If the random variables X4 and

Xo are independent for all 64 and 62 and the probability distribution function for
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each random variable is the same, then F(o) = F{(01) = Fo(o9). Similarly R(c) =
R1(o1) = Ra{o2) and the Equation (2-58) can be simplified to

R(o1, 62) = R(o1) R(o2) (2-64)

As a specific case, it the Weibull distribution function is

considered, Equation (2-64) can be further expanded:

R(0y0,) = exp{ N (%)a B (gﬁg)a} (2-65)

For B1o2 =1, then o = 61 = 62 and the joint reliability function for

Weibull model is obtained.

Ro,0) = exp{- 2(%)a} (2-66)

For the three random variable case, Equations (2-64) through
(2-66) can be expanded by
R(c1,02.0g) = R(o1) R(o2) R(og) (2-67)

R(04020¢) = exP{_ (%)u - (%2_)& - (?B—G)u} (2-68)

Ro,0,0) = exp{- 3(%) } (2-69)
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. GEOMETRIC REPRESENTATION OF JOINT RELIABILITY UNDER
COMBINED STRESS

A. BACKGROUND FOR GEOMETRIC REPRESENTATION

CDF and pdf are useful functions which contain all the relevant information
about the statistical properties of a random variable, in our case, the strength of
composite. These functions are required in reliability analysis, design,
acceptance, maintenance, and operational logistics.

In applications, in order to map out the statistical failure surface even for the
bivariate case (the biaxial combined stress), an exceedingly large number of
experiments are required. A large number of experiments are frequently
impractical due to economic and time constrains and other considerations.
Therefore, it is important to visualize the shape of the failure surface in order to
narrow the range of experiments to be focused on the critical regions in the
stress domain.

In this charter we present the geometric representations for the reliability
functions for the independent case derived in Chapter Il. The graphical
presentation is based on the probability plots and the failure surface
representaticns, which were also investigated. Examination of these graphical
representations will shed light on the appropriate experiments necessary for the
identification of whether the failure processes are independent or dependent.
When the independence is established, the entire failure surface (all

permutations and combinations of combined stress case) can be calculated

from the uniaxial strength statistics.




B. JOINT RELIABILITY FUNCTION
1. Twq Ran Variabl
From Equations (2-56) and (2-66), the reliability function for the Weibull

mode! ca2n be obtained by

R(e)= exP{_ (%)“} (3-1)

RELIABILITY

1.2

9 B M

0.6 g alpha=3
¢ alpha=25

R{sigma)

0.3

0.0 y {
0 1 2

sigma/bela

Figure 3-1 . ~tfects Ot « In Reliability
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if we consider o/p as a normalized variable, then the reliability function
versus o/f can be plotted for various values of a.. Figure 3-1 shows two different
graphes for large and small values of a. For the small values of o, the graph
shows a relatively smooth curve, but as a increases, the graph approaches to
the step function and these relations can be further expanded for the joint
reliability problem. If the independent combined stress cases are considered,
the joint reliability of the composite under combined stress can be obtained from
Equation (2-58).

R(c1,02) = R1(c1) Ra(o2)

Expanding R(c1, 02)

o, B c, "2
R(0r%2) = exP —(B:] ‘[—B;) (2-60)
R(o ) =ex —(El—]al R = €eX —(S—z—]az
(C) =*P171B, ) (%) Z€*P| 7B,
if we assume that

B1=ViaB2 (3-2)

and noting that

where

01 =By202
then the joint reliability for the independent case can be represented by

R(c1.02) = R{(c1) Ra(c2)

o4

c o V..o.)
=exp{—(3—:) }exp ) (E_EB—:J (3-3)

If we further assume C12=V{2/B12, then Equation (3-3) can be simplified
by
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From Equation (3-4), the reliability functions Rq(c4) and Ra(c2) can be
pluited independently in two dimensional space provided that a1, ap, and Cq12
are given. Then R4(c4) and Ra(c2) are combined to yield the joint reliability
function of R(c1,02) as shown Figure 3-2. Observing the Figure 3-2, it can be
noted that the joint reliability is affected by the smaller value between R{(c1)
and Ro(o2) for a given value of 61/B1, that is, the value of the joint reliability is
always close to the smaller value between R4(c1) and Ra(c2). When the values
of both R{(01) and Ra(o2) are close to '1' for the specific range of 61/B1, the
value of the joint reliability is also close to 1, but as either R{(c1) or Ro(o2)
decreases, the joint reliability also decrease depending on the smaller value
between R{ and Ro. We can also observe the effect of C12 for the given oy and
a.

As shown in Figures 3-2a and " -2¢, the Ro(c2) shifts to the right from the
R1(c1) as Cy2 decreases from '1' whereas Ra(c2) shifts to the left as Cq2
increases from '1' while R{(o1) remains constant. So, the joint reliability follows
the smaller function between R1(c1) and Ro(o2) and appears to almost overlap
when C12 is far from '1". As the value of Cq1o approaches to '1', the values of
R1(o1) and Rp(o9) approach each other and when Cq2=1, R{(c1) and Ra(o2)
cross each other at 61/B1=1. The joint reliability function exists to the left of
R1(o1) and Ro(o2) and has a weaker reliability than R{(c1) or R2(c2). So the

joint reliability is always less than other uni-axial directional reliabilities.
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Figure 3-2b : Reliability Vs o1/ (C12=1)
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Figure 3-3 shows the joint reliability in three dimensional space for

different values of Cq2 and for fixed o1 and ap.
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Figure 3-3 : Reliability In 3-D Space (ot=5, uy=3)
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Here we introduce the concept of linearized failure CDF to show the
effect of the joint failure CDF at the tail area.

To get the linearized failure CDF, denoted by F*(c), use logarithmic
algebra. If we take the logarithm of R1(c1) and note that Ry(c1) = 1-F1(c1),

then

[
1

InR(e)} = 0{1-F (o0} =~ 7

Multiplying both side by (-1) and taking the logarithm again, the

(3-5)

linearized failure CDF can then be defined as
F*(o,) =In-In{R (o)) } (3-6)
Substituting Equation (3-5) into Equation (3-6), then

* %

F1 (61) = alln B—1

By the same way, linearized failure CDF corresponding to 6o can be

(3-7)

obtained:
c
Fyr(o) <o 196 ) + 1 g}

Comparing Equation (3-8) to (3-7), it can be noted that Fa*(c5) is

(3-8)

vertically shifted and rotated when compared to F{*(c1). This result is
represented in Figure 3-4.

Similarly F*(c1,05) can be obtained by

a a

6,6 \=In)|5| + —
(°1%2) Bx 12[3] (3-9)
Comparing Equation (3-9) to (3-7) and (3-8), it can be noted that

F*(o1.09) is no longer a linear relation in terms of In(c4/B4). Figures 3-4a, 3-4b,
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and 3-4¢ show the linearized failure CDF for different values of C12. As shown
in these graphs, Fo"(o») is shifted upward and rotated clockwise as Cq2
increases and this causes a higher probability of failure. The joint linearized
failure CDF, F*(c1,05), then follows the higher value between F{*(c1) and
Fo*(op) and does not show the linear line, especially near the area where
F1*(c4) and F2*(c2) intersect each other. So we can observe that , as the value
of C12 increases for the specified oy and ap, F2*(o2) shifts upward and rotates
clockwise causing the intersection between F{*(c1) and Fp*(c2) to go

downward, or in other words creating a higher probability of failure.

LINEARIZED FAILURE CDF
(A1=5,A2=3,C12=0.5)
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Figure 3-4a : Linearized Failure CDF (C12=0.5)
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Figure 3-4b : Linearized Failure CDF (Cq12=1)
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F*(sigma)

LINEARIZED FAILURE CDF
(A1=5,A2=3,C12=5)

10

-10

+ e
mmm
N —

-30

-50

-10 -6

In(sigmat/betat)

Figure 3-4c : Linearized Failure CDF (Cq2=5)
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As a special case, if a=aq=ap, then the joint reliability function and

Equations (3-7) through (3-9) can be simplified by
R(o,c.y=expy\~-| x| (1 +C
(%) (P * (3-10)

F * 1n[c‘
6\ =oall -
(%) b, (3-11)

F*(0)) = OL{m(c1 )+ %1:]}

(3-12)
F*(c o ) = a]n(—(—j—lj+ ln(l + Caz)
12 B, : (3-13)
RELIABILITY (A1=A2=5,C12=0.5)
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Figure 3-5a : Reliability Vs o/} (0t=03=5)
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Figure 3-5b : Reliability Vs 61/8 (oj=01p=15)
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Comparing Equations (3-12) and (3-13) to Equation (3-10), it can be
noted that F2*(o2) is shifted vertically by a In(v12/B12). F*(c1,092) is also shifted
vertically by In{1+(v12/B12)} regardless of values of C12. Figures 3-5 though
3-7 show the reliability in two and three dimensional space and linearized

failure CDF in two dimensional space for o = a1 = ap.
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Figure 3-6a : Joint Reliability In 3-D (ay=09=5)
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As shown in Figure 3-7, each failure CDF is parallel to each other and

the joint linearized failure CDF almost coincides with F{*(c1) or Fo*(o2),

depending on the value of C12 and is parallel to both F1*(c1) and Fo*(c2). So

in the physical sense, 012 is very important for estimating the failure and

reliability. The joint reliability is affected by the weakest reliability function and

this is true for the joint linearized failure CDF.
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Figure 3-7a : Linearized Failure CDF (otj=0=5)
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Figure 3-7b: Linearized Failure CDF (o j=01y=15)
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2. Three Random Variable Case

if the three random variable case is considered, the joint reliability under
the combined stress can be obtained from the Equation (2-79):

R(oy, 09, 0g) = Ry(01) Ro(on) Rg(og)
Expanding this equation for the Weibull model:

vemeea-ont 3] 62 62
’ 2 6 (2-61)

RELIABILITY (A1=25,A2=5,A6=3)
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Figure 3-8a : Reliability Vs 61/B; (C12=0.5, C1g=1)
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If we assume that

B1=Vi2B2. Bo=Vi6Pe (3-14)
and noting that

o1 =Byp 05,64 =Byg 0 (3-15)
where
1 1 1 1
B =’—',B =—',V =——,V - —
2B, 16 By, 12V, 18 Ve, (3-16)

then the joint reliability for the independent case can be represented by

0.58 0.87

0.29
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Joint Relriability

Figure 3-9 : Joint Reliability In 3-D (C1g=1)
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R(c1,62,06)=R1(c1)R2(02)Rg(0g)

o] a ) [+3

=expj—[%i | exp) - (—E—z—) 2 exp| -
1/ \ 2 J

.

Y
'ala
o |o
N~—— S

o

G \ 1 ( 2 6
=exp<— L exp)-|C L exp|-|C =
(B 2By SRR (3-17)

where

<
<

C.=='2¢c =18
2 Bpp" 1% By (3-18)

Furthermore, if C12 and C1g are given, then Cog can be calculated

using the chain rule:
C - Vae _%P2_ %1% BBy BipVie Cye

26" B S2Bs ®2% B, Bg V,,B;s Cy, (3-19)

So, if a1, ap, ag, C12, and C1g are given, then the joint reliability
function, R(c1,02,0g), can be plotted in two dimensional space with respect to
c61/B1. Here we can also introduce the concept of linearized failure CDF to show
the effect of the failure CDF at the tail area. To get the linearized failure CDF,
denoted by F*(c), use the same procedure described in Equations (3-5) through

(3-9), then

F ()= a”{%j (3-7)
F,* (5,) =a2{l n(C,,) +In(fl)}

! (3-8)

Fe* (%) = %{'”(Cve) * m(ﬁ)}

1 (3-20)

45




_‘

F*(c.,0,,0 —In{(ﬁja1+(0 ﬁ)a2+(C ﬁ]as}
(902 %) B, 2B, "B, (3-21)

So it can be noted that the joint linearized failure CDF, F*(c1,00,0g) does
not show a linear relation in terms of In{c1/B1) except when ay=0p=04g, instead
it is affected by F1*(c1), Fo*(c»o), and Fg*(cg). Thatis to say, F*(c1,60,0g) is
dominated by the weakest value among F{*(c1), F2*(05), and Fg*(og) so
F*(01,00,0¢) is always shown on the top of each of graphs as shown in Figures

3-10a and 3-10b. Figures 3-8a through 3-8b show the reliability for different

values of C12 when a4, ap, Cqg is fixed. These figures are expanded to three

dimensional space as shown in Figure 3-9.
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Figure 3-10a : Linearized Failure CDF (C12=0.5, C1g=1)
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LINEARIZED FAILURE CDF (C12=C16=1)
(A1=25,A2=5,A6=3)

100 -r
0 Re—Y
L —
"
._// o F1¢
e F2°
s F3°
+ F
-100
-200 v — v o —
-8 -6 -4 -2 o) 2

In(sigmai/betat)

Figure 3-10b : Linearized Failure CDF (C12=C1g=1)
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As a special case, when a=a{=0y=0g, then the joint reliability and

linearized failure CDF functions can be simplified by
a
\

oy5s00) =00l 5) (+C+ 60
1 (3-22)

%
Fe(og) = c{l N(Cyq) +! F{B—;)} 523

c

F '01,02,06) = alr{Bi) +1 n(1 + C?Z + C?e)

1 (3-24)
Observing Equations (3-22) through (3-24), it can be noted that F{*(c1),
Fo*(o2), Fg*(og), and F*(c1,02,6g) are parallel each other. And the Joint
linearized failure CDF, F*(c1,02,6g), is also affected by the largest function
among F1*, Fo*, and Fg*. The parameter o is related to the rotation whereas

C12 and Cq¢g are related to the vertical shift of the graph.
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Iv. BROBABILISTIC FAILURE CONTOUR UNDER COMBINED STRESS

A. PROBABILISTIC FAILURE

For a combined stress failure mechanism, when one stress component does
not affect the strength of another component, failure is mechanistically
uncoupled, as shown in Figure 4-1. When one stress component affects the
strength of another component, failure is then mechanistically coupled, as

shown in Figure 4-2.
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Figure 4-1 : Mechanistically Uncoupled Mechanism
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Figure 4-2 : Mechanistically Coupled Mechanism

If the probablistic failure is considered, the mechanistically uncoupled case
may contribute to statistical coupling so both failure mechanisms are not
interacting and the probablistic failure mechanism is distinguished from the
deterministic case. In order words, the condition for the failure mechanism is
not fixed, it depends on the stochastic combinations of the intrinsic strengths.
So, for the combined stress case, uncoupled independent statistical effects
produce phenomenologically coupled statistical contours and the mechanically
coupled dependent statistical effects also produce phenomenologically coupled

statistical contours. In the following subsection, the joint probabilistic failure
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CDF will be discussed for the two and three random variable cases and the

effects of the parameters will be shown graphically.

B. Two Random Variable Case
To show the joint failure probability, we here introduce the Weibull
distribution function. From Equation (2-62), the joint failure distribution function

can be obtained for the two random variable case.

oo ) 5
(9r%2) P, Bo (2-62)

From the above equation, (c1/B84) and (c5/Bo) can be computed if the values
of F(o1,00) and C12 are given. Figure 4-3 shows the joint failure CDF in three
dimensional space and Figure 4-4 shows corresponding joint failure contour in
two dimensional space for the specific value of F. As shown in Figures 4-3 and
4-4, the shapes of the failure function and failure contour depend on the
parameter o, which is material dependent. For a small value of «, the failure
contour shows a smooth curve but as the value of a increases, the joint failure
contour approaches to the shape of a rectangle. This phenomenon is the same
for the joint reliability contour as shown in Figure 4-5. It can also be noted that
the failure contour is affected by a large value of a between oy and ap. So if
anyone of the values of « is larger when compared to another value of a, then
the failure contour approaches to the shape of a rectangle, depending on the
magnitude of a. These relations are shown in Figures 4-6 and 4-7. Another
result, shown in these failure contour graphs, is that the distance between the
contour line is small when a is large compared to those when a is small. So the

intersection of the function on both axis depends on the value of each a.
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Figure 4-3a : Joint Failure CDF In 3-D (aj=0p=5)
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The contour line of F(c4,05) =0.5 exists around 1.0 in both the normalized x
and y axis regardiess of o, but as o increases, the F=0.5 contour line

approaches to 1.0 in both normalized axis.
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As an application, if we compute the stress of a specific part of system such
as a rudder or ailerons using the finite element method, then we can estimate
the probabilistic failure and reliability of that specific part of the system.

The parameters a and 3, which were used in the failure CDF and reliability
function, are material dependent so these values should be determined through

experimentation and then these parameters can be applied for that specific

material.
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Figure 4-7a : Joint Failure Contour (ct{=5,09=3)
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C. THREE RANDOM VARIABLE CASE

If

developed using Equation (2-63).

o= t-oaf-(2) (2] () ]

Joint Farlure CDF

the three random variable case is considered, the joint failure CDF can be

No.00

Figure 4-8a . nint Failure CDF (C1g=1)
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Figure 4-8b : Joint Failure CDF (C1g=3)

63




From the above equation, normalized axis coordinates can be computed if
the values of F(o¢, 02, 0g), C12, and C1g are given. And if we specify the value
of C1g, then we can plot the joint failure CDF in three dimensional space with
respect to o4/B4 and 6o/By as shown in Figure 4-8. As the value of Cy¢g
increases, the possibility of failure increases, that is to say, the intersection on
the normalized x-axis moves to the left because og/Pg term is embedded in the
c4/B1 axis. Figure 4-9 shows the corresponding failure contour line in two

dimensional space for the specific value of F(o4, 02, og).
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Figure 4-9a : Joint Failure Contour (C1g=1)
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As proven graphically in the three random variable case, the probability of
failure increases as the number of random variables increase. So in a physical
sense, a specific composite material will show the highest reliability when the
external loads are applied in the pricipal axis direction because there are only
two random variable, X1 and Xp, in the reliability fuction. But when the external
loads are applied in the off-principal axis direction, there exist some shear force

random variable, Xg, which decreases the reliability of the material.
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Fig. 4-9b : Joint Failure Contour (C12=3)
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As an application, if the stress of the maneuvering aircraft is computed in an
arbitrary direction, then the stress can be transformed into fiber, shear, and
transverse matrix directions which can then be used to predict the probability of
failure at that specific load. Sample calculations were made and the results

were analyzed with respect to experimental data in Appendix B.
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V. CONCLUSIONS

This study was directed towards deriving the joint reliability and joint failure
CDF under a combined stress condition. The results were specialized for the
Weibull distribution function based on the observations that the composite
material failure is adequately represented by the weakest link model. The effect
of the statistical strength parameters, a and 3, which are material dependent are
illustrated using two and three dimensional graphical representations.

To analyze the reliability of the composite, the inherent statistical strength
parameters in the composite's principal direction need to be experimentally
measured. Substitution of these parameters in the probabilistic failure criterion
will allow for the estimation of the reliability of the composite for any state of
stress.

Comparison of joint failure distribution under the restriction of independence
to experimental data suggests that mechanistic coupling of the failure
mechanism needs to be included in future extensions of the formulation and
data of much larger number of samples has to be performed at critical stress
ratios to conclusively examine probabilistic independence.

Further studies may be extended to apply these reliability and failure CDF to
the specific part of a system which is made of a composite material. To do this,
the stress of the specific part of a system such as an elevator or ailerons should
be analyzed using such as finite element method. These equations can also be
used in a repair problem which requires the least cost and most effective

method to analyze the combined stress in a specific part of a system.
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So, if we analyze the combined stress, the appropriate fiber and matrix with
proper parameters can be selected to make the composite fit to that specific

part.
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APPENDIX A
Chapter Il Equations

1. For the independent case:
P(X1+X2 : X1£01, X2<02) = P(X1s01) + P(X2<09) - P(X1<01) P(X2<02)

= F1(o1) + F2(c2) - F1(o4) F2(02)
If the Weibull distribution function is considered, F4(c4) and Fo(c2) can be

substituted into the Weibull distribution function:

ot % 50, X0 1[1_exp{-(g)“‘}l+{1-exp{{g_;f}}
oo ) l-wet 2 )

By expanding and simplifying

a o
. (51 1 (52 2
P(X,+ X, X,s6,X,<0,)=1-exp —(EJ —(3-2-)

which is the same result as the Equation (2-32)

2. For the independent case:
F(o,0,) = j {j f(uf(v)dv}du+j {jB

Taking the integrals inside the parenthesis first and substituting limits upon

f1(u)f 2(v)du}dv

1‘
12

evaluation:

‘'

F(5,05,) =jo f1(u){F2( o) -FZ(Bme
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[+)
2
+ jo £ (W{F =) ~F(B,,v)}dv
(o} o]
Fo) =] f,(WduF,o)=] f (udu
(o] o]
Noting Fq(ee) = F2(e) = 1 from the definition of CDF and expanding
[+ o)
[ [ _u_
F(opog)=] fwdu-[ f1(u)F2(B12}1u
[¢) [+
2 2
+ jo f (Vidv - fo f,(VF (B, ,v)dv
Taking integrals and noting that F1(0) = F2(0) =0

F(016,) =F((6) +Fx(0,) - jo f1(u)F2(—B‘:—2)du

(o]
2
_jo f,(VF (B,,v)dv
. From Equation (2-33a)

F(o,0,) =2F(0) - 2 [ :G(U)F(u)du

By integration by parts

F(y,) = 2F(0) - 2[{F(c) - J(U)F(u)du]

noting

[ HWFWd = 0.5F())’

then the joint distribution function for independent case can be obtained by

F(61,00) = 2 F(o) - {F(0)}2
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4. By expanding and integrating

F(5,45,) ={1 - exp{- (%)“H *[’ - exp{— (EBQ)QH

By substituting and expanding

ek - (53]} el -]
+_exp{—(%;->}—1}-[; Jorl- (3 - (525 -1
+Lexp{—(%)a}”]-(aaliexp{-(%-f—(B*a‘”)H
By rearranging terms ar;d simplifying ) )
F(cvoz)ﬂ_[Bz;)exp{-(%) (o)}
(et el () -5

noting 61 = B1202, then the joint distribution function of the Weibull mode!

under bi-axial stress ¢4 and o can be simplified by
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o= t-om-(5) -(5)
5. From Equation (2-50)
R(0,0,) = j:a j:f (U (Vidudv
- j:z{ﬁ( =) - Fy(0y) H ;v
noting F(ee) = Fo(e0) = 1
R(5,0,)={1- F1(c)}j§ ,(V)dv

integrating then we finally got the Equation (2-57):
R(c4.02) = {1-F1(0){1-F2(c)}
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APPENDIX B

Structural Applications

In many structural applications for aircraft, the composite laminae are
oriented at an angle to the tensile load. Take for example the skin on a wing,
where the filament angle is oriented primarily along the direction of tension due
to bending. Transforming the stress by an angie 6 to an off-axis introduces a
shear coupling that will compensate for the bending/rotational coupling of a
swept wing. Such a material loading relation is representative of that indicated
in Figure B-1. We will explore the combined stress state for such a
configuration and the structural reliability as affected by the off-axis angle 6 .
Since we are addressing a spatially homogeneous state of stress, both stress
analysis and the substitution of the combined stress in the probabilistic failure

criterion can be carried out explicitly.

X2'

N e
/ e

Figure B-1 : Transformation Of Coordinates
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For the stress analysis, a load p is applied to the composite material and we
denote the direction of p to be x1', then p can be transformed to the principal
direction of the composite; x1 and xo where

x1 : fiber direction

x2 : transverse matrix direction
and the angle between x1' and x{-axis can be defined as 6 which is positive
clockwise. Using the tensor relation, the stress can be transformed from x{'-x5'
axis to x1-x2 axis as follows:

Gjj = @mi anj Smn’ (B-1)
where

i,j, m,n=1,2 for 2-dimension

C11=P

022 =012'=021'=0

ajj =(cos(x1', X1) cos(xq', x2)> = <cos(9) -sin(06) >

cos(x2', x1)  €oS(x2',x2) sin(B) cos(6) (B-2)
Expanding Equation (B-1) for 611, 619, 699, then
S11=2am1 an1 Omn’
=afq1atq1 0y; +a11a210qy +agqa12 031 +azq1 agy 6’
=ap12 o1y’
G1] =P cos2(6) (B-3)
For the same reason
G172 = -p cos(6) sin(6) (B—4)
Cy2 =P sin(6) (B-5)

To calculate the reliability associated with the applied load p, the stress
components in terms of p (Equations (B-3), (B-4), and (B-5)) can be substituted

into Equation (2-83) to find the joint failure CDF for the specified external load p.
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We note that Equation (2-83) is specialized for the case that the effect of o1,

017, and oy, on the respective failure modes are independent. Substitution

yields:

o o
1 2 oy

Fp,8) = 1- exp _(P_‘.’E_f(_el] _(psin®(@®))  (pcos(@)sin(e)
P, B, Bs

(B-6)
where
61=9011,02=922:06=012
Comparing Equation (B-6) to (2-83) and (3-18), it can be noted that
B12 = cot2(8), B1g = -cot(6)
C12 = V12 tan2(6), C1p = -V1g tan(o)
This joint failure CDF in terms of p and 6 can be plotted in terms of p for an

specified 6. Similarly, from the Equation (B-6), the linearized failure CDF can be

obtained by
F(p.0)=In {pcosz(e) 1+ psinz(e) : . pcos(e)sin@ °
B, B, By

(B-7)
In order to investigate the dependency of the failure mechanism,
experimental data from Sun and Yamada [Ref. 4] is examined. From the
experiment, the following parameters were obtained for fiber, transverse, and
shear force using uni-axial tests.
o =20.5, By = 127000
oy = 5.66, By = 1070
ag = 8.96, Bg = 3078

Substituting these strength parameters into Equations (B-6) and (B-7), the
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probability of failure for load p applied to different angles can be examined.
Figures (B-2a) through (B-6b) compare the joint failure CDF to the experimental
data for different angles. These data will be examined individually for each of

the five angles where experimental data is available.
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Figure B-2a : Comparison Of Experimental Data with

Jnint Failure CRF For Independent Case (15 Deg.)
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At 6 = 15°, even when the load is closely aligned with the fiber angle, Figure
B-2a shows that the fiber strength statistics has no effect on the combined
failure probability by noting that the fiber failure curve is off-scale for the high p
region. That is, the failure is always dominated by a combination of matrix

- transfer strength and the matrix shear strength. The interaction of transverse

and shear can be better observed in the linearized Weibull plot, Figure B-2b,
from which it can be seen fhat in the lower tail (low p region) the transverse
strength dominates and in the upper tail (high p region) the shear strength

dominates.
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Figure B-2b : Comparison Of Experimental Data With Joint
Failure CDF For Independent Case (Linearized, 15 Deg.)
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While the experimental data are not close to the predicted joint failure CDF
under the simplification of independencs, its significance can not be evaluated
because of the small sample size. With the eight samples in the current case,
neither the upper tail nor the lower tail can be observed,thus the failure
probability coupling remains unresolved. The location discrepancy perhaps
has more significance. It suggests that combined transverse and shear
stresses have weakened the composites and that the failure mechanistic

coupling needs to be treated.
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Figure B-3a : Comparison Of Experimental Data With
Joint Failure CDF For Independent Case (20 Deg.)
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At 6 = 2J°, Figures B-3a and 3b show that even with a slight angle change of
5°, the effect of the shear component diminishes rapidly. The transition region
has shifted higher on the upper tail. Physically, it means that unless a large
number of samples are tested, only the strongest of the samples will fail in
shear, and the remaining will fail by transverse stress. For this reason, and
again because of the small number of samples, the shape indicated by the
experimental data has no significance. The location difference between the

data and prediction suggests that mechanistic coupling needs to be included.
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At 8 = 30°, Figures B-4a and 4b show that the effect of shear is shifted to

even a higher upper tail. All comments on 6 = 20° data apply to 8 = 30° as well.
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At 8 = 45° Figures B-5a and 5b show that the effect of shear is practically

nonexistent; in fact, it can not be observed from the range of the scale

presented. What is significant is the location of data is below the location of the

joint CDF suggesting mechanistic coupling.
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Figure B-5a : Comparison Of Experimental Data With Joint
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At 6 = 60°Figures B-5a and 5b show that the effect of shear is no longer

present and that the fit of the data is much improved. The latter observation

further substantiates the existence of mechanistic coupling.
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Figure B-6a : Comparison Of Experimental Data With
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From the experimental data available in the open literature, it was observed
that a much larger number of samples are required to identify the probabilistic
coupling and dependency of strength. What is evident is that mechanistic
coupling needs to be included as an extension to the investigation herein.
Furthermore, experimental design using the probability failure criterion is

mandatory to optimize experimental testing.
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